organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

G. Vasuki,^a V. Parthasarathi,^a* K. Ramamurthi,^a P. Jaisankar^b and B. Varghese^c

^aDepartment of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ^bDepartment of Organic Chemistry, Madras University, Chennai, India, and ^cRegional Sophisticated Instrumentation Centre, IIT, Chennai, India

Correspondence e-mail: sarati@bdu.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.050 wR factor = 0.151 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{10}H_8CINO$, crystallizes in the centrosymmetric space group C2/c. The compound exists in the keto form in the crystalline state. The heterocyclic ring is not aromatic. The N atom is sp^2 hybridized. The structure is

stabilized by $N-H \cdots O$ intermolecular hydrogen bonds.

3-Chloro-2-methylquinolin-4(1H)-one

Comment

Quinolines are ligands which are used as complexing agents for different metals (Hensen *et al.*, 1999). The structure determination of the title compound, (I), was undertaken to study the effect of substitutions at the 2 and 3 positions on the quinolinone ring as well as the nature of the hydrogen bonding.

The torsion angles and the least-squares plane confirm that the quinolinone ring is planar with the largest out-of-plane displacement for C4 [0.051 (2) Å]. The exocyclic angles of C3-C2-C11 [124.4 (2)°] and C3-C4-O4 [124.4 (2)°] deviate significantly from the normal value of 120°. This may be due to the steric repulsion between the substituents at positions 2 and 3, and at 3 and 4 respectively. The C4=O4 bond length [1.255 (3) Å] indicates a typical double-bond character and keto form of the compound in the crystalline state. In the non-aromatic heterocyclic ring, due to conjugation in N1-C2=C3-C4=O4, C3-C4 [1.421 (3) Å] shows the characteristic shortening of the bond from the normal value of 1.478 Å (Allen et al., 1987). In the absence of substituents at C2, the average bond distance of N1-C2 is 1.310 (3) Å in related structures (Dobson & Gerkin, 1999; Lokaj et al., 1999). In the present structure, due to the substitution of the methyl group at C2, there is a significant increase in the bond length N1-C2 [1.342 (3) Å] from the average value. The N atom is sp^2 hybridized. The structure is stabilized by a linear intermolecular hydrogen bond N1-H1···O4ⁱ [symmetry code: (i) $x, -y, z + \frac{1}{2}$]. The hydrogenbond parameters are: N1-H1 = 0.89Å, $N1 \cdots O4^{i} =$ 2.712 (2) Å, $H1 \cdots O4^{i} = 1.825$ Å and $N1 - H1 \cdots O4^{i} = 174^{\circ}$. All the other intermolecular interactions are van der Waals in nature.

Received 18 January 2001 Accepted 5 February 2001 Online 13 February 2001

0234 G. Vasuki et al. • C₁₀H₈CINO

© 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids.

Experimental

2-Methyl-4-quinolone was treated with an equimolar amount of Nchlorosuccinimide in glacial acetic acid at 323-333 K for 30 min. The reaction mixture was poured over ice and the solid was filtered. It was washed with ice-cold water and dried over anhydrous calcium chloride (yield 75%). The compound was crystallized from ethanol by slow evaporation at 298-303 K.

Crystal data

C ₁₀ H ₈ ClNO	$D_x = 1.443 \text{ Mg m}^{-3}$
$M_r = 193.62$	Cu Ka radiation
Monoclinic, C2/c	Cell parameters from 25
a = 24.493 (4) Å	reflections
b = 6.365 (2) Å	$\theta = 20 - 30^{\circ}$
c = 12.859(8) Å	$\mu = 3.42 \text{ mm}^{-1}$
$\beta = 117.240(3)^{\circ}$	T = 293 (2) K
$V = 1782.2 (13) \text{ Å}^3$	Plate, yellow
<i>Z</i> = 8	$0.35 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	$R_{\rm int} = 0.050$
ometer	$\theta_{\rm max} = 68.0^{\circ}$
ω –2 θ scans	$h = 0 \rightarrow 29$
Absorption correction: ψ scan	$k = 0 \rightarrow 7$
(North et al., 1968)	$l = -15 \rightarrow 13$
$T_{\min} = 0.320, T_{\max} = 0.603$	2 standard reflections
1661 measured reflections	frequency: 120 min
1624 independent reflections	intensity decay: none

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0966P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 1.8554P]
$wR(F^2) = 0.151$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.002$
1624 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
118 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric	parameters	(Å,	°)).
--------------------	------------	-----	----	----

N1-C9	1.373 (3)	C5-C10	1.405 (3)
C5-C6	1.364 (4)	C9-C10	1.400 (3)
N1-C2-C3	119.1 (2)	N1-C9-C8	120.8 (2)
N1-C2-C11	116.5 (2)	N1-C9-C10	119.4 (2)
C2-C3-Cl	119.55 (18)	C9-C10-C5	119.0 (2)
O4-C4-C3	124.4 (2)	C9-C10-C4	120.1 (2)
C9-N1-C2-C3	-2.8(3)	CI-C3-C4-C10	-177.38 (16)
N1-C2-C3-C4	0.9 (3)	C7-C8-C9-C10	-2.2(4)
C2-C3-C4-O4	-178.1 (2)	O4-C4-C10-C9	176.3 (2)

All H atoms, except the methyl H atoms, were located from difference Fourier maps and were included in the structure-factor calculations with isotropic displacement parameters equal to $1.1U_{eq}$ of their respective carrier atom, but their parameters were not refined. The methyl H atoms were fixed with HFIX options of the SHELX program, using the riding model. U_{iso} of methyl H atoms were taken as $1.5U_{eq}(C11)$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Dobson, A. J. & Gerkin, R. E. (1999). Acta Cryst. C55, 1192-1195.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

- Hensen, K., Mayr-Stein, R. & Bolte, M. (1999). Acta Cryst. C55, 1565-1567.
- Lokaj, J., Kettmann, V., Machacek, V. & Halama, A. (1999). Acta Cryst. C55, 1101-1103.
- North, A. C. T., Phillips, D. C & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

1440 reflections with $I > 2\sigma(I)$